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Existence of the generalized solution in the problem of equilibrium of the iso- 

tropic elastic nonshallow spherical dome with rigidly held edge and subjected 

to axisymmetric deformation is proved by the method presented in [ 11. The 

topological characteristic of the problem, i.e. the vector field rotation is com- 
puted. The solvability of nonlinear equations for nonshallow shells of revolution 

subjected to symmetric load was investigated in [2, 31. However dome-shaped 

shells were not considered there. 

1. Fundamental relationrhipr, We consider the following version of rela- 

tionships of the nonlinear theory of nonshallow symmetrically loaded shells of revolution: 

T, (&j) = K (81 + v~z), M, = 1) (Xi + YXp) 1 = 2 (1.1) 
ai = VA’ (AB)-’ + wR1-1, F2 = u’B-l + wRz-’ + $z2-i 

x1 = - $A’ (AB)-1, xz = - +‘B-I, $ = ,,,/B-1 _ L;R2-1 

T,, = M,, = ~12 = ~1% = 0 

K = 2hE (1 - v2)-‘, D = 2h3 [3 (1 - +)J-iLE 

where Ti and T,, are tangential stresses; Q and &i2 are the tensile and shear strains, 
respectively ; Mi and Mlz are, respectively, the bending moment and the torque ; xi 
and xl2 are changes of curvature Ri_’ of the shell middle plane s*; v and 11’ are, respec- 

tively, the tangential and normal displacement of the shell middle plane S* ; :I’, B”. 
2C = 0 are coefficients of the first quadratic form of surface s* ; E > 0 is the Young 

modulus ; o < v < liz is the Poisson ratio, and 2h is the thickness of the shell. A prime 
superscript denotes differentiation with respect to parameter l3. 

The analysis of a spherical dome is conveniently carried out in spherical coordinates 
un which A = p sin p, l3 E [O, bl, B = Ri = p, where p is the radius of the shell mid- 
dle plane s*. For convenience we set p G 1. The substitution v = w’ - $ eliminates 
v from all formulas. We introduce the notation 

e, (u.) := 10’ ctg f3 + w, e2 (UJ) = U? + 1~ (1.2) 

The equation of the shell equilibrium is determined by the Lagrange principle which 
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yields b 

1 (Ti (ej) Be, + Mi6xi) sin p dp : i [F1 (SW’ - a+) + Fsaw] sin p ap 0.3) 
0 0 

6Xi = Xi (I%#), 6ei = ei(8w), be, = 8e, + 6x2 + $8$ 

where Fi are components of the external load. Since the shell edge is rigidly held, 

cp (b) = W(b) = W’ (b) = 0 (1.4) 

The axial symmetry of the shell makes it possible to assume that 

(1.5) 
Let condition 

\I, (B) = - (I, (- IV7 UJ (B) = U’ i- B) 

(1.6) 
be satisfied. b<n/2 

We introduce the scalar products 

(II,. 6$1)~, = i MiBxi sin p dp 

0 

(w.&D)~~ = [ ?‘i (ej) 6ei sin p d/!t 
0 

D e f i n i t i o n 1. The closure of the set C1 {C,} of 2n-periodic functions 9 E C(~){W E 

@‘} on [0, b], which satisfies conditions (1.4) and (1.5) in the related norm, is called 
Hilbert space HI {Hz} b 

11 I# j(aHI = [ Mixi sin p dp = II i [+” + (Q ctg P)% f 2W’ll: ctg PI sin fi @ 
0” 0 

II 41;, = s” . ( .) T, e, P, sin p dp = K [ [(w” f ZU)~ f (w’ ctg p -i- w)’ f 

2~ (w” \ W) (w’ ctg p + w)l sins dI3 

Lemma. If function (I, E H1 {w E H,} , then q~ sp E ctu’ {IU’Q, w E CO} on IO, bJ, 
sp = bin @1/P and p > 1. The weak convergence of $,, --) qO in H, {wn - wO in Hz} 

for n - w implies a strong convergence q,sp j qosp {w,, + IL’~, u~~'s~J wo'sp} in c$Jbl. 
Proof. Since by condition (1.5) $ (0) = 0 , hence 

1(81=1(P)~P(Bi=_in(~)sp(a))‘d~=j1*.(11+ 
ii 

B 

(1.7) 

p+ (a) Ctg a] (sin oL)lIp da = 
c 

(sin ~)l~P-‘jzfi~ (P, a) da 

i 
P+t 

f (P + 4 - f (P) = (j (sin u)l’p-‘irM (p. 3) da 

M (P, a) = [Cp’ (a) + p-l $ (a)ctga] (sin a)‘/* 

Using the HMder inequality, from (1.7) we obtain 

I f 0) I f ({(sin c1)2/P-1 dl)l”L, P>l 
0 

0.8) 



896 

z/P-l& , ) ‘/a 
(sin a) Z<P, Pi-tbnl2 

P 

LE 
(S 

M (P, PI2 43 “* d m II 9 /IHi 
1 

0 

Where mk are constants. The validity of the lemma for functions $ E Hi follows from 

(I. 8) and the Arzelh theorem. 

Using conditions (1.4)-(1.6) it is possible to show that the relationships 

0 < m2 < II w’ llN, II us II;: < m3 (1.9) 

II w II (0) 4 11 M (sin PJ’” j/ Co) 
! 
’ (sin 3)-“’ d3 

‘IO, bl “lo, bl (J 

are satisfied. It follows from (1.9) that the lemma is also valid for functions u’ E H,. 

2, $trtrmsnt and rolvrbility of the problem. As in [l],we introduce 
the concept of the generalized solution. 

Definition 2. We call the pair of functions $ E if, and 11. E If, the generalized 

axisymmetric solution of the problem of equilib~um of an elastic nonshallow spherical 

dome with a rigidly fixed edge subjected to an axisymmetric load. The pair of functions 

must satisfy Eq. (1.3) for any pair of functions 59c) E if, and 6~’ e ii,. 
All terms of Eq. (1.3) have a meaning, if 

P, E I/_,, J.2 E H_, (2. I) 

where H_, {U-J is an adjoint space of Hl{H,} . 

Repeating the reasoning of [Z] and taking into account condition (1.6) and the lemma, 
it is possible to show that Eq. (1.3) reduces to the operator equation 9 = c;$, where G 
is an absolutely continuous operator acting in 11,. On spheres T (R, 0) == (4) E HI : 
/I 9 ]JH~ = Ii} of a fairly large radius R the rotation of the absolutely continuous vector 

field I - G’ (I is a unit vector) in N, is equal +I , i. e. f4] 

y (1 - G; T (li, 0)) = + 1 (2.2) 

The following theorem is based on the Leray-Shauder principle [4]. 

Theorem. If conditions (I. 6) and (2.1) are satisfied, there exists at least one gene- 
ralized axisymmetric solution, in the meaning of Definition 2, of the problem of equilib- 
rium of an isotropic elastic nonshallow spherical dome with rigidly fixed edge subjected 
to axisymmetric load. 

Note . (1) The theorem is valid for various dome-shaped symmetrically loaded shells 
of revolution, whose coefficients of the first quadratic form in (1.1) satisfy the following 
conditions : 

a) ‘4 (p) monotonically increases on 10, bl which is the considered region of vari- 
ation of parameter p; 3 

b) 2;. 1 (?)-‘r+” drj < CX) (F > (f is the required reasonably small number; 
I, 
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c) o < m4 4 B @) and 1<i(B) d n5 on [O, bl. 
Dome-shaped shells whose middlcsurface is a part of an ellipsoid, paraboloid, two- 

sheet hyperboloid, and other surfaces of revolution. 
2 ) According to [4] condition (2.2) guarantees the convergence of projective methods. 

3) Similar results can be obtained in the case of a shallow symmetrically loaded 

spherical dome and other shallow symmetrically loaded surfaces of revolution 
(9 = w’ B-l in (1.1)) , if conditions (a), (b), (c) are satisfied. 
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We solve a Cauchy problem for a viscoelastic transversely isotropic medium. Generaliz- 
ing the method of separation of variables for certain classes of static problems treated 

in [ 11, and using this method, we reduce the system of integro-partial differential equa- 

tions to a system of ordinary differential equations in the time coordinate. Solving the 

latter system by the method of averaging [2, 33, we obtain explicit formulas character- 

izing the propagation of waves in a viscoelastic transversely isotropic medium. 
Using the relationship between stress and strain for the medium in question [4] and 

identifying the regular part of the relaxation kernels, we write the system of equations 

for a viscoelastic transversely isotropic medium in cylindrical coordinates as follows : 


